SBU News
SBU News > Research > Vampire Bat Study Probes Mystery of Smell

Vampire Bat Study Probes Mystery of Smell

Vampire bat

Vampire bats may hold the key to unraveling the mysteries of smell, according to research by an international team of scientists led by Stony Brook’s Laurel Yohe.

Vampire bat
Vampire bat

Their findings, published this week in Molecular Ecology Resources, suggest a new method to quantify olfactory receptors by sequencing them in vampire bats.

Understanding how to obtain accurate numbers of olfactory receptor counts in the mammalian genome is major aspect to understanding the sense of smell, according to Yohe, a PhD alumna and affiliated research associate in the lab of Liliana Dávalos in Stony Brook’s Department of Ecology and Evolution, as well as a National Science Foundation Postdoctoral Fellow at Yale University.

The difficulty is that genes related to smell are highly similar to one another, and therefore determining the correct sequencing of the hundreds of olfactory receptors is difficult and similar to analyzing many pieces of a puzzle that are nearly the same.

The researchers selected the vampire bat to compare for the first time different ways to sequence olfactory receptors. The vampire bat relies on its sense of smell to find its prey and has a comparable number of olfactory receptors to humans (approximately 400). They compared different methods to get the DNA sequences of olfactory receptor genes using the vampire bat genome. The methods ranged from traditional polymerase chain reaction (PCR) and cloning to newer technologies to probe sequences of bat olfactory receptors.

They discovered that an approach called “targeted sequence capture,” which involves the researchers to design generic ‘search’ motifs that ‘bait’ olfactory receptors. This makes for a quick and efficient sequencing of the olfactory receptors. By using this method, they discovered a fast and cost-effective method to find up to 90 percent of the genes involved in smell. The method also found almost four times the amount of intact olfactory receptors as was previously reported in published works.

“The comparison study changes our interpretation of what constitutes a good smeller,” says Yohe. “Our method makes it feasible to probe the DNA behind the sense of smell, across hundreds of species and thousands of genes, which may ultimately illuminate some of the mysteries behind the sense of smell.”

Related Posts

Add comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Archives

SBU on Instagram