
Eighteen years after the discovery of the top quark at Fermilab and two years after the shutdown of the Tevatron Collider, the DZero collaboration, and its companion CDF collaboration, have filled out the portrait of this heaviest of all known elementary particles. The original discovery was led by scientists from Stony Brook University and Brookhaven National Lab.
“With the help and advice of many of those responsible for the original discovery, the new observation of a rare way to produce a single top quark has been made,” said Paul Grannis, Distinguished Professor of Physics at Stony Brook.
“This result, which agrees well with the expectations of the established theory, rules out some of the possibilities for new particles and forces. It is a fitting closure of the most significant achievement of the two-decade-long operation of the DZero experiment at the Tevatron,” Grannis said.
Scientists on the CDF and DZero experiments at the U.S. Department of Energy’s Fermi National Accelerator Laboratory announced last week that they have found the final predicted way of creating a top quark, completing a picture of this particle nearly 20 years in the making.
The two collaborations jointly announced on Friday, February 21, that they had observed one of the rarest methods of producing the elementary particle – creating a single top quark through the weak nuclear force, in what is called the “s-channel.” For this analysis, scientists from the CDF and DZero collaborations sifted through data from more than 500 trillion proton-antiproton collisions produced by the Tevatron from 2001 to 2011. They identified about 40 particle collisions in which the weak nuclear force produced single top quarks in conjunction with single bottom quarks.
Top quarks are the heaviest and among the most puzzling elementary particles. They weigh even more than the Higgs boson – as much as an atom of gold – and only two machines have ever produced them: Fermilab’s Tevatron and the Large Hadron Collider at CERN. There are several ways to produce them, as predicted by the theoretical framework known as the Standard Model, and the most common one was the first one discovered: a collision in which the strong nuclear force creates a pair consisting of a top quark and its antimatter cousin, the anti-top quark.
Collisions that produce a single top quark through the weak nuclear force are rarer, and the process scientists on the Tevatron experiments have just announced is the most challenging of these to detect. This method of producing single top quarks is among the rarest interactions allowed by the laws of physics. The detection of this process was one of the ultimate goals of the Tevatron, which for 25 years was the most powerful particle collider in the world.
“This is an important discovery that provides a valuable addition to the picture of the Standard Model universe,” said James Siegrist, DOE Associate Director of Science for High Energy Physics. “It completes a portrait of one of the fundamental particles of our universe, by showing us one of the rarest ways to create them.”
Searching for single top quarks is like looking for a needle in billions of haystacks. Only one in every 50 billion Tevatron collisions produced a single s-channel top quark, and the CDF and DZero collaborations only selected a small fraction of those to separate them from background, which is why the number of observed occurrences of this particular channel is so small. However, the statistical significance of the CDF and DZero data exceeds that required to claim a discovery.
“Kudos to the CDF and DZero collaborations for their work in discovering this process,” said Saul Gonzalez, program director for the National Science Foundation. “Researchers from around the world, including dozens of universities in the United States, contributed to this important find.”
The CDF and DZero experiments first observed particle collisions that created single top quarks through a different process of the weak nuclear force in 2009. This observation was later confirmed by scientists using the Large Hadron Collider.
Add comment